RUVBL1 directly binds actin filaments and induces formation of cell protrusions to promote pancreatic cancer cell invasion.
نویسندگان
چکیده
We report a novel function of RUVBL1 molecule in pancreatic cancer cells. Previous reports describe that RUVBL1 belongs to the family of AAA+ ATPases that associate with chromatin-remodelling complexes and have important roles in transcriptional regulation, the DNA damage response, telomerase activity and cellular transformation. We show that knockdown of RUVBL1 inhibited the motility and invasiveness of pancreatic cancer cells. RUVBL1 localized in the cytoplasm bound filamentous actin (F-actin) in cell protrusions, and increased concentration of monomeric globular-actin (G-actin) in cell protrusions of migrating pancreatic cancer cells. Cytoplasmic RUVBL1 functioned in additional formation of actin filaments in cell protrusions. Consequently, cytoplasmic RUVBL1 contributed to the formation of membrane protrusions by promoting peripheral actin polymerization. Our results imply that these RUVBL1-actin interactions could enhance the invasive properties of pancreatic cancer cells.
منابع مشابه
CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells
BACKGROUND Coiled-Coil Domain Containing 88A (CCDC88A) was identified as a substrate of the serine/threonine kinase Akt that is capable of binding to the actin cytoskeleton. The aim of this study was to investigate the potential role of CCDC88A in the migration and invasiveness of pancreatic ductal adenocarcinoma (PDAC) cells. METHODS Immunohistochemistry was performed to determine whether hi...
متن کاملPodocalyxin‐like protein, linked to poor prognosis of pancreatic cancers, promotes cell invasion by binding to gelsolin
The cell-adhesion glycoprotein PODXL is associated with an aggressive tumor phenotype in several forms of cancer. Here, we report that high PODXL expression was an independent predictor of worse overall survival of pancreatic cancer patients, and that PODXL promoted pancreatic cancer cell motility and invasion by physically binding to the cytoskeletal protein gelsolin. Suppression of PODXL or g...
متن کاملInvolvement of Rac in actin cytoskeleton rearrangements induced by MIM-B.
Numerous scaffold proteins coordinate signals from the environment with actin-based protrusions during shape change and migration. Many scaffolds integrate signals from Rho-family GTPases to effect the assembly of specific actin structures. Here we investigate the mechanism of action MIM-B (missing in metastasis-B) on the actin cytoskeleton. MIM-B binds actin monomer through a WASP homology 2 m...
متن کاملActin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions.
The invasiveness of cells is correlated with the presence of dynamic actin-rich membrane structures called invadopodia, which are membrane protrusions that are associated with localized polymerization of sub-membrane actin filaments. Similar to focal adhesions and podosomes, invadopodia are cell-matrix adhesion sites. Indeed, invadopodia share several features with podosomes, but whether they a...
متن کاملThe Calponin Family Member CHDP-1 Interacts with Rac/CED-10 to Promote Cell Protrusions
Eukaryotic cells extend a variety of surface protrusions to direct cell motility. Formation of protrusions is mediated by coordinated actions between the plasma membrane and the underlying actin cytoskeleton. Here, we found that the single calponin homology (CH) domain-containing protein CHDP-1 induces the formation of cell protrusions in C. elegans. CHDP-1 is anchored to the cortex through its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of oncology
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2014